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Assigning values to 8;, 1 <i < 4 in (7.6), we can form suitable approxima-
tions for the partial derivatives involving the values of # at internal pivots
and boundary nodal points. Using these expressions for the derivatives, the
differential equation (7.1) can be replaced by a difference equation at inter-
nal and boundary pivots.

Another way of replacing the differential equation (7.1) by the difference
equation at the pivot (/, m) is as follows. We choose p pivots which are
arranged about (/, m) in a definite manner. Take (/, m) pivot and label it 0
and label the rest of the pivots 1, 2, ..., p

We put

Lug= 'g ciuy (X))

where ¢;, 0 < i < p are arbitrary parameters and u; is the value of u at the
pivot i. For the nodal points in Figure 7.2 and p=4, (7.7) becomes

Luo = couo-+ c1us + cauz + c3u3 + c4ita (7.8)
With the help of the Taylor series we find

ur=u(xi+ hdy, ym)

2 02
=uo+ h8| = 4 —Szhz Bxl;o + Rox

uz=u(x;— h83, ym)

_ s 0u0 12, 3Pu0
=uo 83hax + i’slh axz

u2=u(x1, ym+ kd2)

+ Ro3

duo
—uo+k833-'i + —k 5283},2 + Rg2

and
ue=1(x1, ym—kd4)
= up—k®, 3“° kzsiaa“;’ + Ros (1.9)
where

3
Ro|=_§16_h3 8_3_u__5_5L_‘(£;, m) x <& <xi+hd

Rpy= - 83k Pu(Es, ym) W Xi—hdy < &< x
6 ox3

3
Ro2= % Pu(xs, §) y,, < £2 < ym+kd

RO‘ = 846k3 33u(x1, e‘) —k84 < f‘ | (7.‘0)
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partial derivatives of as high an order as we desire. We write at the internal
pivot (I, m) as

-

a 2
72u(x, y,,,) ( 52t 5 )u(xz, ym)

[:2(5““‘ 2 )2 :2(5‘““ ! y) ]u(x:, ym) (1.19)

On the right side of (7.19) we have exact discrete analogue of p2. Thus our
difference approximation will then be based upon the polynomial and rational
approximations involving the two operators 82 and 87,
Consider the approximations
(i) 83+0(5%)

(i) 82— -8+ 0(85)
4( inh :Sx)’ 2
sinh™*— = -1
2] (iii) (1+—s§) 82 +0(8%)

(iv) ( 1+ 1582) (8§+ —2]—081)+0(8§) (7.20)

and similar expressions for [2 sinh~8,/2]2,
The approximation (7.20 i) gives the 5-point formula

Vzu’sm ( 8 + kzsz)ul,m

which may be written as

1 K2R
or
W2p2um =[HY +oHy —2(1 +)}ut, m (7.21)
where we denote
Hpx=Ei+E:", Hy=E/+ Ey (122)

and E is the shift operator.
The approximation (7.20 ii) leads to the 9-point difference scheme

1
v2ui, m [hz( —1-1534) k2(82 1—2-8;)]%»,

h272u”m= [Sx 12 81'*’ ( y — 11284 )] Ulym (7.23)

with order of accuracy (h*+k*).

or
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For square network #=k, (7.23) can be simplified to
1202921, = [~ (H2 + H3) + 16(HS + Hy') = 60] ity (7.24)
The approximation (7.20 iii) gives another 9-point difference scheme

72 uim = [hz( 52) 824—,?12“( 1 +112 82) 82] Ulm

Simplifying we may write it as

12 2 ) 1 2 l(l )2]
[1+12(8x+8y)][7 Ulym = [hz =5 &+ e 885 | utym

or
[HY + H,' +8] B*p? utm
_ 1 1=5¢ 4 I 5-a +
20(1 +a) [‘10 7z ® 15 T1a Hi +20 HIHS - Jw.m

(7.25)

It can be easily verified that the difference schemes (7.21) and (7.25) are the
particular cases of the scheme

F2p? tp,m =[(1 +083)~1 82+ (1 +082)! 82] utym (7.26)

where o is arbitrary. The values =0 and 1/12 give (7.21) and (7.25) respec-

tively. Simplifying (7.26) and retaining the terms of 0(4*) we get the 9-point
scheme

[1+0 (8% + 81 h2p2 utym = [8% + 282 + o(1 +) 8282 ym
or

[o(HS +HJ) + (1 - 40)] P2 ttym
=[(1 - 20 (1 +@)) H¥ +(x—2¢ (1 +2)) Hy
+o(l +o) Hi Hy" =2 (1 + ) (1 = 20)] ttym (7.27)
with accuracy of O(h’)

The neglected term 428> 252 p2 u1,m{144 is of high order and does not affect the
acccuracy of difference scheme (7.27). For the square network A=k, (7.27)
becomes

[o (H; + HyY) +(1—40)] h2p? utm

=[(1 —do) (H¥ + H,')+20 HY HY —4(1=20)utm  (7.28)
The approximation (7.20 iv) for 2=k gives the 13-point formula

h2p? vy, = [( 1+-—= 2 82) (82+2108‘) ( 1+-= 82)
( 84 50 s)]
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or
12+ H + HY) p*uim=136— 10 (HS + H |+ (H5:+ H3) -
2HSHY +(HEHY + HE HS)] wim (7.36)
Alternatively, we write (7.32) as

5\2 ) §$.\272
pu (x1, ym)= l6h‘4[(sinh“—2-) + (smh‘l 7"-) ] u(xi,ym)  (1.37)

and use the approximations (7.20). For instance, if (7.26) is used then we get
h4 4 Um = [(1 +083)~1 82+ (1 + 083t 822 iy,
which on simplification becomes
P11 +20 82+ 82)] p* wiym
= [8%+ 2828} + 85 + 4o (8452 + 8382wy,
=l4o (H3Hy + HE H33) +(1 - 80)(H3k + Hib) + 2(1 — 160)
H HY +8(—1+70) (Hy + H) +4(5—240)] ttym
(7.38)
where high order terms have been neglected. The values ¢ =0 and 1/12 give
the difference schemes (7.34) and (7.36) respectively.

We shall now discuss the numerical solution of the Laplace and the bihar-
monic boundary value problems.

7.3 DIRICHLET PROBLEM

Consider the Laplace equation in two space dimensions

0%y P .
= — o
Pru=5-7+ 57 0 (7.39)

over the unit square R =[(x,):0 < x, y < 1], subject to the boundary
condition ‘
u(x, yy=g(x, y) (7.40)
on the boundary dQR of the unit square R.
The statement of the theorem which ensures the existence and uniqueness
of the solution of the boundary value problem (7.39)-(7.40) is:

THEOREM (Maximum Principle) 1.1 A nonconstant solution of (1.39) in
the region QR takes its maximum and minimum values on the boundary 0 R
of the region R.

If a uniform mesh of length 4 in each coordinate direction is imposed on
R, then using (7.28), differential equation (7.39) may be approximated at an
internal pivot (/, m) by the difference equation

[(1 —40) (HX + H} )+ 20H Hy —4 (1 - 20)] wtym =0 (7.41)
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where o is a parameter. When o =0and 1/12, (7.41) yields the well known five-
and nine-point difference approximations of (7.39) which are correct to orders
h? and h* respectively. If MA =1, the totality of equations (7.41) gives rise to
(M —1)? linear equations in (M — 1) unknowns of the form

Au=g (7.42)
where A is the square matrix of order (M —1)* and g is a vector of order
(M—1)? arising from the boundary values of the problem. The matrix A is
symmetric for arbitrary o. We notice from (7.41) that in each row of the
matrix A every nonzero nondiagonal coefficient will have a sign opposite to
that of the diagonal coefficient if 0 < ¢ < 1/4. The condition of diagonal
dominance is then satisfied and the matrix A is irreducible.

Example 7.1 Solve the Dirichlet problem
pu=0in R
u=f(x, y)=log [(x +1)>+y* on dR

where R is the unit square 0 < x,y <1, with‘h= 1/3.

© The region QR is covered with the square network with 4 =1/3 (Figure 7.3).
There are fotir internal pivots and eight boundary pivots. Furthermore, the
boundary pivots of the network lie on the boundary 0 R.

y
booa
By -0 810

" o -

B, b —F’ L Ln
7Y T 4

X i +P’ ?93

12& lg O —

0 B, B, Bg "

7

Fig. 7.3 @-internal and O-boundary pivots

We replace the Laplace equation by the S-point difference scheme at Pi,
P32, P3 and Ps. The four simultaneous equations in matrix notation can be
written as
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F 4 -1 =1 0717 wm VT A+h
-1 4 0 -1 wo || A+A
-1 0 4 -1 u3 fs+fi
L 0o ~-t -1 4] L w JL fitss
Using the boundary values, we obtain
0634804, uz=1.059993
u3=0.798500, w4=1.169821
Example 7.2 Solve the Dirichlet iirobleh
P2u=0in R
u=x2.+y2 on dQR

where R is the semicircle x2+)2 << 1, y > 0 and dR is the boundary of R
with A=1/2. o
The theoretical s'olutioh is given by

L L —16 | .
u(x, y)vtx -y +Zo1r(2m-.ﬁ(2m+l)(2m+3) 2mt1 gin (2m+1)0

where x=rcos 8, y=rsin 6,

We cover the regian R by a square network with 4 = 1/2 (Figure 7.4). Due
to the symmetry about y-axis, i.e. u(—x, y) =u(x, y), we solve the Dirichlet
problem in the first quadrant only.

’ )
‘wel u:\l( - us0 uvl'/l ust X
an 7.4 .-mtcmal and O-boundary pwots

The Laplace equatnon is replaced by the 5-point difference scheme (7.30)
at the internal boundary pivots. We get the following two equations

‘ 1 1 1
for Pn(O, —2—-), u|=—2—uz+,—4—
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1 1 _ V3-1
for Pz(-i', —2—), U=

Thus, we find

Vv3+7
2‘/3 wu + 8v3

u1=0.631854, uz=0.763708
7.4 ITERATIVE METHODS

The system of equations (7.42) is solved by an iteration process which gene-
rally can be written as

u(’l""l) = Hu('l) + k (7.43)

where u(® denotes the vector of which the elements are the values of u(x, y)
at the pivots, obtained after n iterations. The matrix H is called the iteration
matrix determined by the iteration method chosen.

If u is the exact solution of (7.43), then we have

u=Hu+k (7.44)
which shows that the error €™ =y—y® satisfies
€n+1) = Hem X (7.45)
or
€™ = Hre

It is obvious from (7.45) that the error vector €™ obeys the homogeneo

form of the iteration equation (7.44). Now, if the sequence of vectors u™ is
to approach u, then the sequence of vectors €™ must approach zero. A neces-
sary and sufficient condition for convergence, i.e. lim €™ =0_ with arbitrary

n-»o0

starting vector €9 js that
lim H*=0 (7.46)

n-»o0

Let us assume that the matrix H has a complete set of eigenvectors, say e
and corresponding eigenvalues A;. Since the eigenvectors are complete, we
may expand €9 in the form

€0 = Yae (1.47)
Operating successively by H, we get the result
€n = f\:ai)\fei

= Xn’{anel + az(%f—)"ez +... } (7.48)

Although it is possible for €™ to contain no contribution from some parti-
cular A;, rounding errors will introduce such contributions as the iteration
proceeds, and Equation (7.48) may be taken as the general expression for
€™, Thus, for the error vector to vanish, it is necessary that the modulus of
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which is smaller than 1 for o < 1/4. For large value of M we obtain
a2

§=1- A= 20)M? (7.66)
. where we have used
T 2
cos o7 _ 1-—-2———-1"12
The convergence rate of the iteration method is
v=—log ¢ &~ —2—(—1—:%,—)—M—2- (7.67)

The values =0 and o =1/12 in (7.67) give the rate of convergence for the
well-known 5-point and 9-point formulas. -

7.4.2 Gauss-Seidel method

This method is also known as the method of successive displacements, the
clements of u*+Dreplace those of u® in the calculation as soon as they have
been computed. We then write the Gauss-Seidel method for (7.42) as

(L+D)uD+Rum=g (7.68)
or
u* ) = —(L+ D) 'Ru®+(L+D)"'g (7.69)
For the difference scheme (7.41), the iteration is defined by

(n+1) 1—40 [ (1) |, (@ () | ()
D = [y m Ui Lm T Uim—) U
i 4(1—20)[ i—1,m+ Ui+ t,m+ Ulm—1 T Um+1

d (n) (n) (n41) (n+1)
+ 2(1 . 20) [“"H.M-H +Ui—1,m+1+ Ui—1,m—1 +uiy l,m—l] (7.70)

This fixes the matrices L and R. The error equation of the iteration is writ-
ten as

! —4
e g s el et 2+

ag
+_2t_1'_—507)_[€?21.m+l + el('l)n.mﬂ +eH el (1.7D)

with the values of " equal to zero on the boundary IR of the unit square
Ri’:‘quation (7.71) can be solved by the method of separation of variables.
We put
el = el (1.72)
and
&= X1Ym (1.73)
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After substitution of (7.72) and (7.73) in (7.71) and on rearrangement of the
right hand side, we find

Ymi1—=BYm+€Ym-1=0 (7.74)
and
aXi1—bXi+cXi-1=0 (7.75)
where
_ (1—40) Eop
= 2M=20) T 2(1=20)
_s_(1—40)8
b=¢ 4(1—20)
_p 1—4o af
e={ 31=20) T 21=29) (7.76)

and B is an arbitrary parameter to be determined. The boundary conditions
are

Xo=0, Xmu=0, Yo=0, Yrr=0 (7.77)
The solution of (7.74) subject to (7.77) is
) Ym=Ai(VE" sinI2 1 <m < M—1 (7.78)

M
with ‘

B=24/€cos % and A an arbitrary constant.

Similarly, the solution of (7.75) satisfying the boundary conditions is given
by ' '

I
Xi=A2 (/—2—) sin%’—, <p<M-1 (1.79)
where A2 is arbitrary. ’
" Moreover
b=24/ac cos EME (7.80)

By eliminating a, b and ¢ from Equations (7.76) and (7.80), we obtain
23— doscg(l +202e) 22 — A(oic) —aiCh + da3Crca)z — 8ardac,ci =0 (7.81)
where
il 4

- 14
Cp=COS M

cos 2
Cq=COS —
? M
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from which we get
wg+vV wgl—dw+4
z=
2
Thus, the value | £ | =22 is a function of g and w. The largest | £ [ occurs
for the largest value of g, which we denote by g1, and obtain from (7.94),
for p=1, g=1. We then have

e wgr+V W8t —4w+4
- 2

(7.95)

for the largest value of z.
We consider the following cases,
(i) wigi—dw+4 >0
| 2 lmax = 4(wg1 +V/ (W87 — 4w +4))
<tw+vVW=4w+d)=tw+ | w=2])=1ifw <2
(i) w2gi—4w+4 < 0
|z | =4V wigi—(Wig2—dw+d)=1/w—1 < 1
We now study the behaviour of z as a function of w. When the parameter w
takes the value unity, the iterative process defined above is the Gauss-Seidel
method. The object of using a value for w other than unity is to reduce the
largest of the absolute values of the eigenvalues of the matrix H, i.e. £. We
shall denote this by émax. The value of w which minimizes £max is called the

optimum accelerating factor, wo.
From (7.93) and (7.95), we have

ad _ _z—g2
dw z—3wgi

Atw=1,z=gior ¢ =gf with g1 < 1 and dé/dw < 0. Therefore, as w incre-
ases, { decreases until the denominator vanishes, i.e. the slope reaching
minus infinity at

z = }wog (7.96)
From (7.95), we find that the minimum ¢ occurs when
w1 =4(wo—1) (7.97)
or
wo 20=Vi=gh 5
& I+y1-g;

L]

The value of £max is given by

252
fmax=w_zgl—=wo-l=
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where
= COS—-
g1=cosp:
For large M, we find
1—sin—
b= ——L s 1-27 (7.98)
1 +sin—
M
The convergence rate is
‘ 27\ 27
v= _ng(l—ﬁ)"ﬁ (7.99)

Hence the convergence rate is much better than it is in the case of the Gauss-
Seidel method.

We now state the theorem which enables us to determine the optimal
relaxation parameter in the SOR method.

THEOREM 7.2 -Let the real matrix A be symmetric, positive-definite, and
of the block-tridiagonal form

D1 Ry _]
L D R:
L: D3 Rs
A= . . .
Li-1 Dny iln—l
L L. D, |

where D; are diagonal submatrices. Then p(Hos) = p(H;) and the optimal
relaxation parameter w in SOR is given by

Yot = IF -i(Hcs))” » HHos) < 1
where p(Hy) is the spectral radius of the Jacobi iteration matrix correspond-
ing to A, The optimal value of p(H,) is
P(Hw) =Wopt— 1
Example 7.3 The system of linear equations

)
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The iteration method is convergent only if
161 <1, 1<p,g<M-1

The ultimate convergence rate is determined by the maximum magnitude
of ¢,

fmx=max l f , (7.107)
p.q

From (7.103), the factor £ lies in the range
1—win < € < 1—wf, (7.108)

where fi» and fa denote the minimum and the maximum values of the
function f.
From (7.106), the relationship (7.108) may also be written as

l=wém < € < 1-w(1-40)pm (7.109)

where ¢, and ¢» denote the minimum and the maximum values .of the
function 4. The smallest and largest values in magnitude of ¢ correspond
top=g=1andtop=g=M-—1 respectively. Thus, we obtain

fr=max { | 1=wia |, | 1= w(1—40)dm | } (7.110)

where, ¢m =8 sin? #/2M and $r =8 cos? m/2M. As w increases from- Zero,
1—=w(1~40)¢y drops slowly from unity, 1 —wéa drops rapidly from unity.
Thus ¢*=1-w(l1-40)$, > 0 so long as 1—w(1—40)¢, > —(1—wda).
For greater values of w, ¢*= — (1~ wen), hence £* then rises with increasing
w. The smallest £* occurs where

1= w(l—40)pu= — (1 — war)
hence for

2 1
ws= =
¢M+(l—4a)¢m _ .9 11‘)
4(1 40 sin M

(7.111)

This value of w is denoted by wopt.
The optimum propagating factor is obtained from (7.110) as

f o ¢M‘ (1 - 40)¢m
P S+ (1—40)d,
1-2(1-20) sin? —
= M (1.112)

—do sin2 T
140 sin M

For large M, (7.112) becomes

1 2
.Eopt=l" 7 (l _’40).5-72 (7-113)
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The convergence rate is

2
u=-i-(1-4a);'72 (7.114)

Example 7.4 Solve the boundary value problem
P2u=0in R
u=e* cos 3y on IR
where R=[0 < x, y < 1], using the 5-point difference scheme with #=1/3.
Determine the number of iterations required to reduce the error in the solu-
tion values by 106,
The nodal points are
xi=lh, 0<I<3
Ym=mh, 0 < m<3
The 5-point difference scheme is given by
4ty — Ut 1,m — Ul-1ym = Ulymi1 =~ Um-1=0, 1 <, m € 2
The boundary conditions become
u1,0=2.7183 w2, 9=e2=7.3891
us,1=e3 cos (1) =10.8522
u3,2=e3 cos (2) = —8.3585
uo,1=cos (1)=0,5403
up,2=cos (2)= —0.4161
t1,3=e cos (3)= —2,6911
u2,3=e2 cos (3) = = 7.3151
We have
I=1,m=1, 4ur,1 - u2,1— u1,2=3.2586
1=2,m=1, —u1,1+4uz,1 - u2,2=18.2413
I=1,m=2, —ui,+4ui,2—uz2 = —3.1072
=2, m=2, —u2,1—u1,2+4uz,2= —15.6736
The above system of equations may be written as .
1 =14 -1/4 07 Twal [ 0.8146]

14 1 0 14| | 4.5603
~14 0 1 -1/4 | {wal| | -0.7768
0 —1/4 -14 1] Luma] L-39184 ]

The Jacobi iteration method becomes
u®*+D = Hu + b
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TABLE 7.2 NUMBER OF [ TERATIONS REQUIRED FOR THE DIRICHLET PROBLEM

WITH €= 10~
o 0 1 11 1 S 1
h 24 2 8 6 24 4
Jacobi Method
% 45 38 34 28 26 25 23
1
3 108 84 76 68 59 50 54
1 -
5 182 139 125 112 98 84 89
Gauss-Seidel Method
—:— 23 21 19 15 17 16 14
—é— 47 44 41 38 34 29 24
—;— 78 73 68 63 57 51 44
SOR Method
1
re 19 17 16 13 13 13 13
—é— 35 32 30 27 25 23 22
—gl— 54 51 47 43 39 35 34

7.5 ALTERNATING DIRECTION METHOD

The alternating direction implicit method developed in Section 5.6.3 may
also be applied to the iterative solution of elliptic equations. The basis of
the method is to assume that the iteration is analogue to a time variable.
The Peaceman-Rachford method for solving the heat flow equation (5.152)

" is written in (5.188) as

@) ( 1- %83) ) ( 1+ %b‘f) U5
(i) ( - -;—si) ufit?=(1+ 393wt (1.115)

where u’",'.',' 12) is the intermediate value and r > 0.
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Equation (7.115) is suitable for the numerical calculation but not amena-
ble to the mathematical analysis. We eliminate the intermediate value

ufm'® in (7.115) and a relation between ulwf? and "), is obtained as

(1 - %Sg) (1 - _;_33) D = (1 + .’2_132) (1 +§5§) um  (7.116)

We now regard the time step in solving (7.116) as one cycle (stage) of itera-
tion. The values u{ and u"s" are the nth and (n+Dth iteration approxi-
mations to . The starting values uf‘,).)n used for the first iteration corres-
pond to the initial iteration. The quantity r is called the iteration parameter.

If u;,m is the exact solution of (7.116), then we have

G +8Dum=0 _ (7.117)

which is the 5-point difference approximation to the Lapace equation (7.39).
The convergence rate of the iteration procedure (7.1 16) is determined by
studying how the errors decay at successive stages of the iteration.

Using (7.61) and (7.62), we get the propagating factor associated with

(7.116) as
< 2 TP V(2 _ 2 79
=( 4 sin ZM)_(r 4 sin 2/1{1‘
= 2 P )[4 2 79
( +4 sin ZM)( +4 sin ZM) )
1 <p,g < M-1 (7.118)

which may also be written as

. .y
4r (sm2 TPy Gin? -i)

f=1- M 2M
' ) 2 TP 02 Tq
( 14 2r sin 2M) (H—erm ZM)
or
a+b
e (¥ (e
. where
=2 sin2P_
a=2r sin M
=2 «in2"4_
b=2r sin M
If r is kept constant throughout the iteration then from (7.118) we have
1§ <1
or
1 <1~ Hath) (7.119)

(1+a) (1 +b)
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Thus, the solution of (7.116) converges to the solution of (7.117) as n = © }
for any positive fixed iteration parameter. From (7.118), we obtain

np

1-2r sinz -Q—A?
Rl N e}
p<M—1 2
1+ 2r sin 2 M
1—2r sin? oL
e 2”
<qEM—~ 2 "4
1+ 2rsin 2 M
1—2rsin? =2
- max ———-—2M (7.120)

1€ M—1
pe 1+2rsin? ZM‘J

Since 0 < o < sin? —— < sin? 27 ... < sin? a(M~1)

AR— g
i M M < B, we try to
reduce
. 1-2r sin? =2
max ————ﬂ (7.121)
SpEM-— 2__‘
1-+2r sin M

as small as possible.
To minimize (7.121) as a function of r, consider the function

Ly 1=2rA -
¢(A, r)_ 1+2r)\ s T >0 (7.12.

where A=sin? 7p/2M and 0 < « < A < B.
It is obvious that the derivative of $(}; r) with respect to A is negative for

A > 0, so that the maximum value of | ¢(A; r) | occurs at one of the points
of the interval [«, B]. Thus we get

max | (% r)|=max [‘ 1= 2r

| 1=2rB '] (7.123)

0<a<h<p [ T+2rc PI1+2rB |
Hence our optimal choice of r should be such that
1-2r0 _ _ 1-2r8
142ra 1+2rB
that is, '
ropt= 1/2\/;3— =1 (2 sin iiM— cos -2—;7) = l"

sin—;
M
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from which we get

™
_l1-2m, l-tan g

o agizs [T¥2m |” ot tan T
2M
Hence
» 72
1—tan—2—ﬁ
gopt= ——'ﬂ—
1+tan —27
1+cos ™ —sin ™ 17
cos - = sin M-}
= T R
1+cos W[-+smﬁ_l
™
1 -sin—
=—J,‘{_ (7.124)
1+sm—A—l

Which is the same as (7.98). The one parameter Peaceman-Rachford iteration
method and the SOR method have the same rate of convergence for solving
7.117)..

Let us consider the application' of the Mitchell-Fairweather formula for
solving (7.39) which may be written in the form

1 1
ol [
= [l+(a+%r )83] [l + (cr+ —;—r )sﬁ] 0y (7.125)
where 0 < o < 1/4.
The solution u, will satisfy the difference equation
(32 +85+20838) u =0
which is the 9-point formula (7.28). Equation (7.120) for (7.125) becomes

y=rl]?
y+r,] (7.126)

a€y<h

| € \mxé[ max

where
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The nodal points are x;=I/h, ym=mh, 0 < I, m < 3. The Peaceman-
‘Rachford method for the determination of the mtermediate solution values
may be written as

D o 2Dl - D

—ulm l+(P 2)"1 m+u1m+l 1< I; m<2

The boundary conditions become
(n) u(':;””:o,

Uo.m = 0<m<3
ufd=u"d"? =0, 0<1<3
) = u(",,‘,‘””—mh-(mh)i‘, 0<m<3
uf = uf’5t® = (1) - 0<1<3
We have
I=Lm=1 o Dl -
=0+ (p = uil +ul"}
[=2,m=1 =" 4 (p+2)u§H? — i
=+ (o~ 2+
I=1,m=2 - (n+1/2)+(P+2) (n+1/2)_u((;.,2.|.1/2)
=} +(p— 2)ui3 +ui3
1=2, m=2 — Dy (o D)V D
= u§l) +(p— uf3+ 13
The system of equations may be written as
k2 -1 0 0 [ ui® ]
-1 p+2 .0 0 ugll-Hn)
0 p+2 -1 || uf5"?
L 0 0 -1 p+2 L a5 ]
Fp=2 0 1 0 ral ro 7
0 p=2 0 1 u&”{ 8 1
- 1 0 p=-2 0 ") +37 -1
L 0 10 p-2 L o3 Lo J

or
(611 + [H]Ju+1 = [pl1] - [VIJu® + b
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B 0 20 -1
[H]= , [Vl=

o B -1 21

2 -1 1 0
B= 1=

-1 2 0 1

The Peaceman-Rachford method for the determination of the solution
values wor”, 1 < I, m < 2 may be written as
= ufim D+ (o + 20l — ]

=P+ (- ul D+l 1< m <2

where

We have
I=1, m=1, “l)+(P+2)u(""") Uy
=ul? (o N gl
1=2,m=1, =" ++2uld " —uis"
= D 4 (o= 2D 4y )
I=1,m=2, (n+l)+(P+2)u(n+l) (r:;-l)

=D 4 (o= D D

1=2,m=2, l—H)_*_(P+2)u(n+l) un+l)
(n+l/2)+(P 2)u n+1/2)+ (n+1/2)

The system of above equations becomes

" p+2 0 -1 0 ‘|r U
0  p+2 uh
-1 0 P+2 (ll+|)
. 0o -1 p+2 L 5"
"'P_2 1 0 0 1‘" (n+|/2)1 0 -]
1 p=2 0 0 RGN NP
oo 0 em2 1 || T
_L o 0. 1 p=2 L3 L oo J

or
[p[0] +[VI]u™+V = [pl1] — [H]]u+12 + b
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ro4 . -2 I
~1 4 ~1

B=
4 }
L 2 4 ]

The matrix equation (7.139) can be solved by the direct or iierative methods.

7.6.1 Derivative condition at the curved boundary

We shall be concerned here with the boundary condition of the form

u

%—A(s) (7.140)
prescribed along a part or all of the boundary OR, where s is the boundary
parameter and n stands for the unit normal directed outside the region R.
The region R is covered with square net with grid lines parallel to coordinate
axes with mesh spacing h. .

The part of the boundary R along which (7.140) is prescribed and shown
in Figure 7.7. The point Po is a boundary pivot. If the normal from P to

&R intersects R at Q, and also intersects an internal mesh line P3P2 at P
such that

P3Py = h8s, P P2=h82, P1Po=hd,
where

8:+83=1,0 <8 <4/2,86=20

-y

hé,

v

Fig. 7.7 Normal to a curved boundary
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then the approximation to dujdn at Q can be written as

Uuo— Ui

T=A(s)
AT, 8aua+dus] _ )
h&[“ 8215 ]‘A(S) (7.141)

where s is to be given the value corresponding to the boundary point Q.
7.7 THIRD BOUNDARY VALUE PROBLEM

We consider the third boundary value problem of the form
Pu=0 ‘
over the unit square R =[(x, ), 0 < x, y < 1] with the boundary condition

Z—Z +a(x, y)u=H(x, y) (7.142)
along the boundary d R, where cujon is the outwardly directed normal. It can
be proved that the boundary value problem will have a unique solution for
a(x, ) > 0. We cover the square region by a uniform mesh of size 4 with
Mh=1. There are M +1 nodal points along each coordinate direction. The
Laplace equation is replaced by the 5-point formula

(B +8)um=0,0 < I,m < M (7.143)

Keeping in view (7.135) we replace the boundary conditions (7.142) by the
following discretizations

Ulym— U-1,m— ZhPIVO,m = - ZbHo,m
UM +1m— UM—~1,m + 2hqluM,m = ZhHM,m

U1 — -1~ 2hpaur,o= —2hHio

Ul At — Ui, A-1 + 2hg2u,m = 2h Him (7.144)
with
P1=aoym, 1= arm
p2=ai, q=a,my and 0K I,m<M

Equations (7.144) are used to eliminate terms in'(7.143) which lie outside the
region R. Having made the necessary replacements the totality of Equations
(7.143) modified by (7.144) gives rise to the matrix equation of the form

Au=2hG (7.145)

where A is a matrix of order (M +1)? and G is a column vector of. orde‘r'
(M+1)%
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r 3 -1 -1 7
o1 5 1 -1
? 2 2 2
{ -1 3 -1
-1 R -1
2 2 2
1 1 _1 1
2 2 2 2 2
_1 -1 2 -1
2 2 2
1 -1 3 -
-1 -1 5 _1
2 2 2
! -1 -1 3
L A
Fow [ o
3
u2 4
u3 2
7] —.2.
4 4
us = 0
u —3—
6 4
u -2
u _3
8 4
L w ] L 0 |

mesh size exceeds a certain critical value. If we use the central difference ex-
pressions for the derivatives, we get

Sfu/’m + 8_3“[,", - Rx(ul+l,ni - ul-l,m) - Ry(ul,m+1 - ul,m—l) =0 (7 147)
b Gk
where Rx= 7y and Ry= >

The numerical solution of (7.147) can be obtained by considering it as the
steady state solution of the corresponding time dependent problem. It is easily
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verified that the difference solution becomes unstable when the mesh size A is
such that the parameter

Rp=Vv—h> 2 (7.148)
where P=max(|a]|,| 7 |).
The parameter R, is called the cell Reynold or Peclet number. The difference
scheme (7.147) is of 0O(h?). The stability restriction (7.148) is overcomé By
considering central difference approximations for second order derivatives
with backward (upstream) differences for the first order derivatives. We have

82Ut ym + 82ttty — 2R 1 sthtym — 2Ry ytitym =0 (7.149)

This scheme is unconditionally stable. The truncation error of (7.149) is given
by
uh? 6214(,\'1, ym) _ ﬂzi__ t?zu(xh ym)

T2y ox? 2v )2

As in Section 5.3.6, we want to subtract difference quotients (R8> + RS2ty
from (7.149) such that the global error of the scheme (7.149) goes from 0(#)
to 0(h?). Thus, the difference scheme of 0(/2) is given by

Tl,m = -+ 0(/14) (7. 1 50)

1
siu[,[n + aiul,m - 2Rx(7,\ul,m + —2_ siulgm )

1

) 8i,ul,m ) =0 (7151)

- 2Ry( Pythtym +

The difference equations (7.147) or (7.151) may be expressed as (7.42)
and solved with the help of an iterative method discussed in Section 7.4.

Alternatively, the Peaceman-Rachford ADI method may be used to obtain

the iterative solution of the diffusion convection equation (7.146). We write

6] [l +2Ryrp 8y — —;—rsi]u;";l/2 = [ 1=2Ryru8, + —%—rﬁi]ul'fm

(ii) [l +2Ryru,S,— -;—rSﬁ]ul"fnl = [1 — 2 Rxrixdx + %rﬁf] Uit (7.152)

Example 7.7 Solve the boundary value problem
du du .
—p2 u 94l ¢
Vu+/3(8x (')y) lin R
u=00ndR

using the S-point difference scheme with A= 1/3 where R is the unit square
and B > 0 is a parameter. '
The nodal points are xi= /1, ym=mh, 0 < I, m < 3.
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The difference scheme with central differences and R¢=B—g may be

written as

— (8% + 8D utym + Re(utts t,m = =1y — Utsmst + itym—1) = h?
The boundary conditions give
u0,0=0, u1,0=0, u2,0=0 u3,0=0
u0,1=0, uo,2=0, uo,3=0
u3,1=0, u3,2=0, u3,3=0
u1,3=0, u2,3=0
The difference scheme becomes
—(1+ R)ui-1,m + 4ttt — (1 — Rttt s1,m
— (1 = Ro)ut,m—1— (1 + Reyutym1=1/9
We have, after incorporating the boundary condition:

I=1,m=1, 4u1,1'—(1—Rc)uz,1—(1+R¢)u1,z=—19-
1=2,m=1, —(1+ Re)u1,1 +4uz,1 — (1 + R)uz,2= 19—
I=1,m=2, 4u12—(—R)uz,2— (1 — RJu1,1= —19~
1=2,m=2, —(1+ Re)ui,2+4u2,2— (1 = Ruz, =—;—
The system of equations may be written as '
r 4 -(1-R.) —(1+R0) 0 1 [ ri17
-(1+R.) 4 0 —(1+Re) u2,1 1
1
"9
—-(1-Ry) 0 4 -(1-R.) ui,2 1
L o -(1-R) —-(1+R.) 4 | L] L1

For Re=—%—, we get

u1,1=0.0513, u2,1=0.0662
u1,2=0.0406, u2,2=0.0513
Using the upwind (downwind) difference schemes for the first derivative.
we get
= Bx+ 82ty m + 2R (tym — ti1-1,m) — (Ut 1 = tym) ) = B2
or — (14 2R)ut-1,m +4(1 + ReVttym = it 1,m = ttym-1 = (1 + 2ReYthtyms1 = b
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We have

' 1
I=1,m=1, 4(1+ RJur, —u2,1~ (1+2Rou1,2= 5

. . 1
1=2,m=1, —(1+2R)u1,1 +4(1 + Ruz,1 ~ (i +2Re)llz,-=-9—

1
I=1,m=2,4(1+ Rout,2— 12,2 = 1,1 =g

1=2,m=2, —(1 +2Ru1,2+ 41+ Rz =120 = —é—

The system of equations may be written as

" 4(1+R) -1 -(142R.) 0 7 [l i
_(1+2R) 41+R) ~ 0 —(1+2R) u;,ll i 1
l .
| =,*9\ _
-1 0 4(1+R,) -1 \m,z | 1 l
| 4 -1 —(14+2R) 4(1+R)] L2 | L1l
For R. =:T'1Z-’ we get

u1,1=0.0357, w2,1= 0.0423,
u1,2=0.0304, t2,2= 0.0357

1.9 AXIALLY SYMMETRIC EQUATION

The axially symmetric equation in cylindrical coordinates (r, ¢, z) in the
region R=[0 < r < R]x [0 < z < c] may be written as
Pu 1 ou Pu
2y} o= —r — — —_— =
Vu a’2+ = or +32 f(r, z, »u) (7.153)
with appropriate boundary conditions. The region Q, is discretized, using
the rectangular network.
n=I,1=1,2,.- L
zm=mk=msh,m=1,2, -, M
with mesh lengths hand k inr and z directions respectively where:
k R Cc
s=73" h= 2 andk—M.
A 5-point difference scheme for the Laplace operator p? at the nodal point
(r1,2m) may be assumed in the form
2 = 3—21_4 .l_- _3£ +€3’-‘)
Vium=\g2* 7 3 " 322} 1m
= — aotlt,m + @t 1,m + @x(Utm 1 utm—1) + asti-1,m (1.154)
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The boundary conditions give

wa=0 0< <2
wm=0 0<m<2
We have :
2u0,
1-0,m=0, - (2 (2557¢) + 2ot -1
1=1, m=0, (0 2u10+u00 , 5 (0 uoo) | 21,1 2u1,o)= 1
[O4 2% ar
1=0,m=1, (2 (2“1»1“)22“0,1) + uo,o(—;)zzuo,l )= 1
_ (uo—2us1  , 0—uon m,o—2u1,,)=
met, = (B2 T ) !
or - 24uo,0— 16u1,0—8uoy =1

- 2uo,0+ 16u1,0~ 81,1 =1
= 4u0,0 + 24uo,1 — 16u1,1=1
- 4u1,0- 2uo,1 + 16u1,1 =1
The above system of equations may be written as
24 -16 -8 07 [wuo0]

-2 16

—

(=4
—

-8 1,0

)

-4 0 24 -16 uo,1

Lo -4 -2 16) Lwmad L1

which gives. ;
uo0,0=0.1888 u1,0=0.1449
t0,1=0.1516 u1,1=0.1177

" 7.10 BIHARMONIC EQUATION

Consider the biharmonic equation
V‘u=ﬂ+23—j:-%z—+ g:: =0 (7.159)
over the open unit square R,0 < x,y < 1, together with the boundary
conditions

2“ -
—a?-o atx=0, 1, o<y<l
u==0 at y=0,1, 0<x<1
ayz 'f(x) at y=0, 0<x<l1
Py

5 =g(x) aty=1 0<x<l1 (7.160)
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A square mesh is imposed over the region 0 < x,y < 1 with the mesh size
«h such that Mh=1, M > 3. We use (7.34) to approximate (7.159). The finite
difference equations are given by

(84 + 28282 + Bum=0 1<l m<M-1

Uj. m=0
’ <Sms<s M-
Urr1m= — Ui-1,m, =0, M} 1<m<M-1

uro=u,m=0
w1 = —u—1+hi
uLme1= — M1+ R g, 1<I<M-1 (7.161)

where fi=£(lh), g1=g(lh) and u1,m is the approximate value of u(lh, mh).
~ Equation (7.161) represents a system (M — 1)? equations in (M —1)* ua-
kowns. Alternatively, we may apply the Conte-Dames method directly to solve
(7.159). Here, the iterative process is given by

AT 2 (8% ufl P + 282820 + 8yulm,
D 2 D _ g oD 1 p8u (1.162)

0) . « age . . .
where us.),. is an initial approximation to m, 1 < ILm < M-1 and r is
(n4+1/2)

an iteration parameter chosen to accelerate convergence. If uim '~ is elimi-
nated, Equations (7.162) become
WD = —r (O% i + 26%82ufm+ 85 i)
— 138282 (ufl " = i)

which may be written as

(1+r 8D A +r&)ulm” ,

=[(1+r 8% (1 +78) - (33+2835+8))] uflm (7.163)
The exact solution ur,m of (7.163) will satisfy

(8% +25%82 + 83) urm=0
Thus, the formuia (7.162) constitutes a convergent iterative method for sol-
ving the biharmonic equation (7.159).
_Example 7.9 Solve the boundary value problem

. plu=1, o<x,y<l1
. -subject to the boundary condition (see Figure 7.10)

u=0, %‘i =0, on AD
X
u=0, %5 =0, on AB
y
du /

u=0, Ix =0, on BC
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u=0, él= -1, on CD
dy
Use the 13-point scheme with 4 = i .
The nodal points are Xi=Ih, yw=mh, 0 < I, m < 3. The square region
0 <,y <1, is extended such that the boundary pivots may now be con-

sidered as the internal points of the extended network as shown in Figure 7.10.

’1‘ ’ H ’ bl 3
(-1,4) {0,4) (4,6) (2,4) (3,4) (4,4)
. du _ _
u=0 3y 1
(-1.3) Q3,03 3 103,3) (5.3
D L ’
] 1
U=0/A ;
(=1,2) ‘(o,z) (1,2) (2,2) (3,2) ©,2)
y 1
du _nf u=0
—==0
dx j f b-':j_.:o
(-1,1) ! ox
- 4,1
’ (0,1) (1,1) (2,1) (3,1) (&1
. Y
v
) A
/0) A 110,06y (1,0 (2,0) 81(3,0) (4,0)
u=0 du _
W.o
(-1,-1) (4, 1)
(-1,-1)  (0,-1) (1,-1) (2,-1 (3,-1)

Fig. 7.10 Internal and boundary pivots for biharmonic boundary value problem

The 13-points difference scheme in schematic form may be written as

2 | -3 2
I - -
P tim =1 ( 1 8 20 8 | 1 ) i
2 | -8 2
1
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The boundary conditions become

Up,0 = 0 Ul,0= 0 . Uz,0= 0 Uz, 0= 0
Up,1 = 0 Up,2 = 0 Up,3 = 0
u3,1=0 u32=0 u3,3=0
u1,3=0 u2,3=0
u,1 —u1,-1=0 2,1 = U2,-1=0
U~ u-1,1=0 u1,2— t-1,2=0
a1 — 12,1 =0 us2—122=0
u1,4—u1,2= -1 . u2,4—uz,z= -1
2h 2h

We have
I=1,m=1, [(u-1,1 +u3,0+u1,3+ tty,—1) + 2ttg,0 + 2,0 + u2,2 + g, 2)
— 8(u2,1 + 11,2+ tig,1 + t1,0) + 20u1,1] = %
[=2, m=1, [(ua,1 +u2,3+ sio,1 +u2,-1) + 2(u1,0 + 3,0 + us,2 +uy,2)
— 8(u3, 1 +u2,2+ur,1 +u2,0) + 20u2,1] = 8_11—
I=1,m=2,[(u_1,2+us,a+us,2+uno) +2(uo,3 + u2,3 + tto,1 +12,1)
= 8(uo,2 + u2,2+ u1,3+u1,1) +20u1,2] = §1—]-
1=2, n =2, [(uo,2+ u2,4+ uss2+u2,0) + 2(u1,1 + us,1 +us,3 +u1,3)
—8(ut,2tus, 2+ uz,3+12,1) + 20u2,2] = 8—11—

Substituting the boundary conditions, we get

22u1,1 ~ 8uz,1 — Bur,2+ 2uz,2 = 8_11—

— 8u1,1+22u2,1 + 2u1,2— 8uz,2 = 31-1-

— 8u1,1+ 2u2,1 +22u1,2— 8uz,2 = .g.%.

2u1,1— 8uz,1— 8,2+ 22u2,2 = g%-

which may be written as

11 -4 -4 17 u1,1 1
-4 11 1 -4 2,1 ) 1
-4 1 11 -4 wa | 162 | 55

L 1 -4 -4 1 w2 | Lss
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Solving we obtain
ur,1 = 0.0265, 2,1 =0.0265, u1,2= 0.0599

uz,2=0.0599

Bibliographical Note

The rigorous treatment of the difference methods for the elliptic equations
is given in 86 and 102. A very readable discussion is found in 9, 114, 184 and
207. The high order difference schemes for the Laplace and biharmonic
operators are available in 46. The third boundary yalue problem for the
Laplace equation is discussed in 120.

The theory and practice of iterative methods for the solution of the ellip-
tic equation together with an extensive bibliography is included in 250 and
753. The iterative methods based on 9-point difference formula for Laplace’s
equation are considered in 81 and 249. The three level alternating direction
implicit iterative methods for solving the Dirichlet problem are studied in 30,
108 and 133. The A.D.L iterative method for the solution of the biharmo-

nic equation is given in 49.
Problems
1. The function u(x, y) satisfies the differential equation
1
2 —_—=
piut > 0

for | x| <1, | »| <1, and the boundary condition u(x, y)=0 for
x| =1, |yl =L Determine an approximate value of (0, 0),

using the 5-point difference approximation. Use h=1 and #=14, and
perform the Richardson extrapolation.

2. Solve the differential equation pu+1=0 by using the 5-point dffer-
ence scheme. The geometry and the boundary conditions are specified
in the Figures 7.11, 7.12 and 7.13

3. Solve the differential equation p2u=16 on a square of side 2 with
u=0 on the boundary. Use the 5-point formula.

(i) Formulate the corresponding difference equation with mesh-size
h in both directions. '

(ii) Solve the difference equation exactly for h=1and h=1/2.

(i) Give the formulas for a convergent iterative procedure for the
solution of the difference equation.

(iv) Give the formulas for the solution by successive over-relaxation
method. (BIT 4 (1964), 61)

4. If p2u=0 in the region R lying out side the square | x |=1,]y[=1 anc
inside the square | x| =2,|v| =2 and ifu= 0 along the outer boun-
dary and u =300 along the inner boundary of R, obtain approximatc




